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Solution Série 3

Tous les exercices seront corrigées. La correction sera postée sur le moodle après
environ 2 semaines.

Exercice 1. Soit G = [0, 1[ et � : G⇥G 7! R la loi de composition definie par

x� x0 :=

(
x+ x0 si x+ x0 < 1

x+ x0 � 1 si x+ x0 > 1
.

1. Montrer que � est a valeurs dans G et trouver un element neutre 0G 2 G et
une application inversion  : G 7! G telles que

(G,�, 0G, )

forme un groupe commutatif.

Solution : . Il n’est pas di�cile de voir que 0 est neutre pour l’addition, puisque
x� 0 = x+ 0 = x pour tout x 2 G. Similairement on voit que 0� x = x. Il est aussi
claire que l’operation est commutatif, puisque l’addition sur R est commutatif. Pour
chaque x 2 G on a que 1�x 2 G et que 1�x est l’inverse de x, en fait x+(1�x) = 1
et donc x � (1 � x) = 0. Par commutativité, 1 � x est aussi l’inverse à droite. Il ne
reste plus qu’a montrer que l’opération est associative. Soient x1, x2, x3 2 G, il y a
trois possibilités :

1. Si x1 + x2, x2 + x3 < 1, on a

x1 � x2 = x1 + x2, x2 � x3 = x2 + x2

et
(x1 � x2)� x3 = (x1 + x2)� x3 = x1 + x2 + x3 � "

avec " = 0 ou 1 suivant que x1+x2+x3 est < 1 ou > 1 (on observe que comme
+ est associative sur R on n’a pas besoin de mettre de paranthèses dans cette
inégalité et que

" = "(x1 + x2 + x3)

ne depend que de la somme des trois termes et pas de leurs valeurs individuelles).
D’autre part

x1 � (x2 + x3) = x1 + x2 + x3 � "

avec le même " = "(x1 + x2 + x3). Ainsi on a

(x1 � x2)� x3 = x1 � (x2 � x3). (0.1)



2. Si x1 + x2 < 1 6 x2 + x3, on a

x1 � x2 = x1 + x2, x2 � x3 = x2 + x3 � 1

et
(x1 � x2)� x3 = (x1 + x2)� x3 = x1 + x2 + x3 � 1� "

avec " = 0 ou 1 suivant que x1 + x2 + x3 est < 2 ou > 2. On a également

x1 � (x2 � x3) = x1 � (x2 + x3 � 1) = x1 + x2 + x3 � 1� ".

On a donc (0.1). Par commutativité de � (et de +) cela traite aussi le cas
x2 + x3 < 1 6 x1 + x2

3. Si 1 6 x1 + x2, x2 + x3 alors

x1 � x2 = x1 + x2 � 1 < 1, x2 � x3 = x2 + x3 � 1 < 1

et
(x1 � x2)� x3 = (x1 + x2 � 1)� x3 = x1 + x2 + x3 � 1� "

avec " = 0 ou 1 suivant que x1 + x2 + x3 est < 2 ou > 2. Également

x1 � (x2 � x3) = x1 � (x2 + x3 � 1) = x1 + x2 + x3 � 1� ".

On a donc bien (0.1).

Exercice 2 (?). SoitX un ensemble. Dans la premiere serie, on a defini sur l’ensemble
de ses parties P(X) une loi de composition

� : (A,B) 2 P(X)⇥ P(X)! A�B 2 P(X),

ou A�B est la di↵erence symetrique de A et B :

A�B := A [ B � A \B = {x 2 A [ B, x 62 A \B} ⇢ X

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur
intersection).

1. Definir un element neutre eP(X) 2 P(X) et une inversion •�1 : P(X) ! P(X)
de sorte que

(P(X),�, eP(X), •�1)

forme un groupe commutatif.



Solution : .

On montre d’abord que l’opération � est commutatif et associatif. Pour la commua-
tivité :

A�B = A [ B � A \ B = B [ A� B \ A = B�A,

puisque [ et \ sont les deux commutatifs. L’associativité peut être démontrée à l’aide
de simples diagrammes de Venn : Ici, on voit les deux types de calcul avec chacun
une étape intermédiaire, pour que l’on puisse mieux voir ce qui se passe.
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On peut également e↵ectuer les calculs suivants. On note que :

A�B = A [ B � A \ B = A [B \ (A \ B)c.

De plus :
(A \ B)c = Ac [Bc et (A [B)c = (Ac \ Bc).

Donc on calcule :

(A�B)�C

=
�
(A�B) [ C

�
\
�
(A�B) \ C

�c

=
�
((A [ B) \ (A \ B)c) [ C

�
\
�
((A [ B) \ (A \ B)c) \ C

�c

=
�
((A [ B) \ (Ac [ Bc)) [ C

�
\
�
((A [B) \ (Ac [ Bc))c [ Cc

�

=
�
(A \ Ac) [ (A \ Bc) [ (B \ Ac) [ (B \ Bc) [ C

�
\
�
(A [ B)c [ (Ac [ Bc)c [ Cc

�

=
�
(A \ Bc) [ (B \ Ac) [ C

�
\
�
(Ac \ Bc) [ (A \ B) [ Cc

�

= (A \Bc \ Cc) [ (B \ Ac \ Cc) [ (C \ Ac \Bc) [ (C \ A \B).

Pareil on obtient :

A�(B�C)

=
�
(A [ (B�C

�
\
�
A \ (B�C)

�c

=
�
A [ ((B [ C) \ (B \ C)c)

�
\
�
A \ ((B [ C) \ (B \ C)c)

�c

=
�
A [ ((B [ C) \ (Bc [ Cc))

�
\
�
Ac [ ((B [ C) \ (Bc [ Cc))c

�

=
�
A [ (B \ Bc) [ (B \ Cc) [ (C \ Bc) [ (C \ Cc)

�
\
�
Ac [ (B [ C)c [ (Bc [ Cc)c

�

=
�
A [ (B \ Cc) [ (C \ Bc)

�
\
�
Ac [ (Bc \ Cc) [ (B \ C)

�

= (A \ Bc \ Cc) [ (B \ Ac \ Cc) [ (C \ Ac \ Bc) [ (C \ A \ B).

Alors � est bien associatif. On cherche l’elément neutre. De la série 1 exercice 5.2 on
sait que :

;�A = A�; = A,

alors ; = e� est l’élément neutre. De plus on a vue que

A�A = ; = e�,

donc •�1 : P(X) 7! P(X), A 7! A est l’application d’inversion. Avec l’associativité
et la commutativité de la première parti on obtient un groupe commutatif.



Exercice 3 (Groupes de fonctions). Soit X un ensemble et (G, ?) un groupe. Soit

F(X,G) = {f : X 7! G}

l’ensemble des fonctions de X a valeurs dans G (les applications de X vers G).

On muni F(X,G) de la loi de composition interne suivante : etant donne f1, f2 2
F(X,G) on defini la fonction f1 ? f2 par

8x 2 X, f1 ? f2(x) := f1(x) ? f2(x).

(ici on abuse les notations en notant la loi de composition sur F(X,G) de la meme
maniere que celle sur G).

1. Trouver un element neutre eF(X,G) et une inversion •�1 de sorte que
(F(X,G), ?, eF(X,G), •�1) forme un groupe.

2. Soit U ⇢ G un sous-ensemble deG. Donner une condition necessaire et su�sante
pour que le sous-ensemble des fonctions a valeurs dans U

F(X,U) ⇢ F(X,G)

forme un sous-groupe de F(X,G).

Solution : . L’idée sera vraiment tout au long de l’exercice de puiser autant de choses
que possibles dans la structure de groupe de G pour en déduire des choses sur celle
de F(X,G).

1. On pose
eF(X,G) : X ! G, x 7! eG

et pour f 2 F(X,G),

f�1 : X ! G, x 7! (f(x))�1.

En e↵et, pour tout f 2 F(X,G) et pour tout x 2 X on a :

— f ? eF(X,G)(x) = f(x) ? eF(X,G)(x) = f(x) ? eG = f(x). Puisque f ? eF(x,G)

et f correspond sur tout x 2 X, ils sont égaux, et donc eF(X,G) est neutre
a droite.On montre la neutralité à gauche de la même manière.

— f?f�1(x) = f(x)?(f(x))�1 = eG = eF(X,G)(x). Comme les deux application
correspond sur tout x 2 X, ils sont égaux, et donc f�1 est bien l’inverse
à droite de f . On montre de la même manière que f�1 est bien l’inverse à
gauche.

On peut se convaincre facilement que l’associativité de la loi de F(X,G) découle
de celle de la loi de G par un argument similaire (On montre que (f ? g) ? h et
f ? (g ? h) correspond sur tout x 2 X.)



Remarque. : On a fait ici un petit abus de notations en écrivant f�1 sans avoir
encore verifie que c’etait bien l’inverse de f (mais on s’en remettra). Notez
cependant que f�1 ne designe pas la reciproque de f (au sens reciproque d’une
bijection).

2. On veut montrer que U est un sous-groupe de G si et seulment si F(X,U) est
un sous-groupe de F(X,G).

) : Soit U un sous-groupe de G on va montrer que F(X,U) est un sous-groupe
de F(X,G). On a eG 2 U , alors la fonction eF(X,G) prend valuers dans U ,
i.e. eF(X,G) 2 F(X,U). Si f1, f2 2 F(X,U), alors on a que pour tout
x 2 X : f1(x), f2(x) 2 U . Donc f1 ? f

�1
2 (x) = f1(x) ? (f2(x))�1 2 U pour

tous les x 2 X. Alors f1 ? f
�1
2 2 F(X,U). Alors F(X,U) verifie le critêre

de sous-groupe vue en cours.

( : Soit F(X,U) ⇢ F(X,G) un sous-groupe. On va montrer que U ⇢ G est
un sous-groupe. La fonction eF(X,G) est dans F(X,U), i.e. son image est
inclu dans U , i.e. eG 2 U . Soient g1, g2 2 U . On considere les fonctions
constantes fi : X ! G; x 7! gi, pour i = 1, 2. On a f1, f2 2 F(X,U), et
alors f�1

2 2 F(X,U). Donc pour n’importe quel x 2 X :

g1 ? g
�1
2 = f1(x) ? f2(x)

�1 = f1 ? f
�1
2 (x) 2 U.

Alors U ⇢ G verifie le critère de sous-groupe vue en cours.

Exercice 4 (Groupes modulaires). Soit q > 1 un entier non nul ; on definit sur Z la
relation suivante (de congruence modulo q)

m ⌘ n (mod q)() m� n = qk, k 2 Z

et on dit que m et n sont congrus modulo q (ie. la di↵erence m� n est divisible par
q).

Pour a 2 Z la classe de congruence a (mod q) est l’ensemble des entiers m congrus a
a modulo q :

a (mod q) = {m 2 Z, m ⌘ a (mod q)} ⇢ Z.
L’ensemble de ces classes de congruences modulo q est note

Z/qZ := {a (mod q), a 2 Z}

(c’est donc un sous-ensemble de P(Z)).
1. Montrer que la relation de congruence modulo q est une relation d’equivalence

(reflexive, symetrique, transitive).

2. Montrer que

a (mod q) := a+ qZ = {a+ q.k, k 2 Z} ⇢ Z.



3. Montrer que pour toute classe a (mod q) 2 Z/qZ il existe r 2 {0, · · · , q � 1} tel
que

a (mod q) = r (mod q).

Quel est le cardinal de Z/qZ ?

4. pour A,B 2 P(Z) des sous-ensembles de Z, on a pose

A� B := {a+ b, a 2 A, b 2 B} 2 P(Z).

On definit egalement

�A := {�a, a 2 A} 2 P(Z),

l’ensemble des opposes des elements de A. Soient a (mod q), b (mod q) 2 Z/qZ,
montrer que

a (mod q)� b (mod q) = a+ b (mod q) = a+ b+ qZ.

et que
�a (mod q) = (�a) (mod q) = �a+ qZ.

5. Montrer que (Z/qZ,�, 0 (mod q),�) forme un groupe commutatif : le groupe
des classes de congruence modulo q.

6. On rappelle la notation ”multiple” (dans la notation additive) pour n > 1

n.a (mod q) := a (mod q) + · · ·+ a (mod q) (n fois)

(et on rappelle qu’on a une notation simnilaire pour n 6 0). Montrer que pour
n 2 Z

n.a (mod q) = na (mod q)

(la classe de congruence de l’entier na).

7. Montrer que le sous-groupe Z.1 (mod q) verifie

Z.1 (mod q) = {n.1 (mod q), n 2 Z} = Z/qZ.

8. Montrer que si a est premier avec q (ie. pgcd(a, q) = 1) alors

Z.a (mod q) = {n.a (mod q), n 2 Z} = Z/qZ

(on utilisera Bezout pour montrer qu’il existe n 2 Z tel que n.a (mod q) =
1 (mod q)).

Remarque. On a donc montré que pour tout entier q > 1 il existe un groupe com-
mutatif fini d’ordre q.



Solution : . 1. On montre que cette relation est une relation d’équivalence. Pour
cela, il faut verifier trois choses :

i) Reflexivite : Soit m 2 Z. Alors on voit que m�m = 0 = 0 · q, donc m ⌘ m (mod q)
ii) Symetrie : Soient m,n 2 Z tels que m ⌘ n (mod q), i.e. il existe k 2 Z tel que
m� n = kq. Mais alors n�m = �kq = (�k)q. En posant p := �k 2 Z, on alors que
m ⌘ n (mod q) =) n ⌘ m (mod q).
iii) Transitivite : Soient m ⌘ n (mod q), et n ⌘ l (mod q), i.e.

9 k, k0 2 Z : m� n = kq et n� l = k0q

mais alors, m� l = q(k + k0) et on obtient donc que m ⌘ l (mod q).

2. Il su�t simplement de voir que :

a (mod q) = {m 2 Z : m� a = kq pour un k 2 Z}
= {m 2 Z : m = a+ kq pour un k 2 Z}
= {a+ kq pour un k 2 Z} ✓ Z

3. Soit a (mod q) 2 Z/qZ. On e↵ectue la division euclidienne de a par q. On a alors
que

9k 2 Z, et r 2 {0, 1, · · · , q � 1} t.q. a = kq + r

On voit que a ⌘ r (mod q) car a � r = a � (a � kq) = kq. Puisque a et r sont en
relation, leurs classes d’équivalence sont égales.
On veut montrer que |Z/qZ| = q. Mais on voit que Z/qZ correspond a l’ensemble des
classes d’équivalence. Or chaque classe a un représentant unique dans {0, 1, · · · , q�1}.
Cela nous donne alors le nombre de classes, modulo le choix des représentants, est
exactement q.

4.

a (mod q)� b (mod q) = {a+ kq k 2 Z}� {b+ kq k 2 Z}
= {a+ kq + b+ k0q k 2 Z}
= {(a+ b) + q(k + k0) k, k0 2 Z}
= {(a+ b) + q · p p 2 Z}, en posant p = k + k0

= (a+ b) (mod q)

et



�a (mod q) = {�(a+ kq), k 2 Z}
= {�a� kq, k 2 Z} = {�a+ pq, p 2 Z} en posant p = �k
= (�a) (mod q)

5. On vient de vérifier que � est bien a valeurs dans Z/qZ.
Il faut maintenant vérifier que cette loi de groupe est associative :

(a (mod q)� b (mod q))� c (mod q) = a+ b (mod q)� c (mod q)

= (a+ b) + c (mod q)

= a+ (b+ c) (mod q) = a (mod q)� (b+ c) (mod q)

= a (mod q)� (b (mod q)� c (mod q))

Donc l’operation � est associative.

On doit montrer à présent que 0 (mod q) est bien le neutre :

a (mod q)� 0 (mod q) = a+ 0 (mod q) = a (mod q)

= 0 + a (mod q) = 0 (mod q)� a (mod q).

Donc 0 (mod q) est bien l’élément neutre pour �.

Il reste à voir que � est e↵ectivement l’inverse pour �.

a (mod q)��a (mod q) = a� a (mod q) = 0 (mod q)

et
�a (mod q)� a (mod q) = �a+ a (mod q) = 0 (mod q).

Donc �a (mod q) est l’inverse de a (mod q).

Et enfin, on a que

a (mod q)� b (mod q) = a+ b (mod q)

= b+ a (mod q) = b (mod q)� a (mod q).

Et on obtient ainsi un groupe commutatif, comme voulu.



6. On raisonne par récurrence sur n.
On voit que a (mod q) = 1 · a (mod q).

Supposons à présent que
nP

i=1
a (mod q) = n · a (mod q). Montrons que

n+1P
i=1

a (mod q) =

(n+ 1) · a (mod q) (avec
nP

i=1
a (mod q) :=

(a (mod q)� · · ·� a (mod q))| {z }
n fois

.
n+1P
i=1

a (mod q) =
nP

i=1
a (mod q)� a (mod q)

= n · a (mod q) + a (mod q) = (n · a+ a) (mod q) = (n+ 1) · a (mod q).
Ce qui conclut la récurrence.

7. Z.1 (mod q) := {n.1 (mod q), n 2 Z}. On se rappelle que

Z/qZ = {r + qZ, r 2 {0, 1, · · · , q � 1}}

Z.1 (mod q) ✓ Z/qZ : soit n 2 Z. Alors il existe un unique r 2 {0, 1, · · · , q � 1} tel

que n (mod q) = r (mod q), ce qui implique que n (mod q) 2 Z/qZ.

Z.1 (mod q) ◆ Z/qZ : Soit r 2 {0, 1, · · · , q � 1}. Alors r (mod q) = r · · · 1 (mod q),

par 6. Donc r (mod q) 2 Z.1 (mod q).

8. Le théorème de Bezout a�rme qu’il existe n,m 2 Z tels que na + mq = 1 ()
1� na = mq () na (mod q) = 1 (mod q).
Considérons alors A := {r · na (mod q), r 2 {0, 1, · · · , q � 1}} ✓ Z · a (mod q).
Mais puisque na (mod q) = 1 (mod q), on obtient que

A = {r · 1 (mod q), r 2 {0, 1, · · · , q � 1} = {r (mod q), r 2 {0, 1, · · · , q � 1} = Z/qZ
Exercice 5. Soit (G, ?, e, •�1) un groupe fini de cardinal n > 1. On enumere ses
elements de la maniere suivante

G = {g0 = e, g1, · · · , gn�1}.
On peut representer la loi de groupe sous forme d’un tableau

? e g1 · · · gn�1

e e g1 · · · gn�1

g1 g1 g1 ? g1 · · · g1 ? gn�1
...

...
...

. . .
...

gn�1 gn�1 gn�1 ? g1 · · · gn�1 ? gn�1

.



1. Donner ces tableaux pour n = 1, 2, 3 (si on veut, on pourra utiliser un corollaire
convenable du Thm de Lagrange).

Solution : . Pour n = 1 : G = {e}. Le tableau est le suivant

? e
e e

.

En e↵et, on a que e ? e = e, car e est le neutre.

Pour n = 2 : G = {e, g1}. Et le tableau donne :

? e g1
e e g1
g1 g1 g21 = e

.

Il est clair que g1 ? e = e ? g1 = g1.
Supposons que g1 ? g1 = g1. Mais alors g1 = g1 ? (g1)�1 = e, et on on aurait g1 = e.
Ce qui est une contradiction.

Pour n = 3 : G = {e, g1, g2}. Le tableau est :

? e g1 g2
e e g1 g2
g1 g1 g1 ? g1 = g2 g2 ? g1 = e
g2 g2 g1 ? g2 = e g2 ? g2 = g1

.

Encore une fois, il est clair que e ? gi = gi ? e = gi, pour i = 1, 2.
Considérons à présent le sous-groupe engendré par g1 : hg1i 6 G.
Le theoreme de Lagrange a�rme que |hg1i| divise |G| = 3, alors son cardinal est soit
1, soit 3. Puisque g1 6= e, on a que |hg1i| = 3.
Par conséquent, si g21 = e, on aurait que |hg1i| = 2, ce qui est absurde. Et si g21 = g1, on
obtiendrait g1 = e, ce qu’on a supposé faux. Par conséquent, on obtient que g21 = g2.
Par symétrie, g22 = g1.
Et donc g1?g2 = g1?g21 = g31 = e, car g1 est d’ordre 3. De la même manière, g2?g1 = e.


