EPFL Automne 2024
Algebre Lineaire Avancée, MATH-110

Solution Série 3

Tous les exercices seront corrigées. La correction sera postée sur le moodle apres
environ 2 semaines.

Exercice 1. Soit G =[0,1[ et & : G x G — R la loi de composition definie par

@ = x4 siz+a <1
' r+2 -1 siz+a'>1"

1. Montrer que @ est a valeurs dans G et trouver un element neutre Og € G et
une application inversion © : G — G telles que

(G7 @7 OG7 @)
forme un groupe commutatif.

Solution : . 1l n’est pas difficile de voir que 0 est neutre pour 'addition, puisque
@0 =1x+0=2x pour tout x € GG. Similairement on voit que 0 ® x = x. Il est aussi
claire que l'operation est commutatif, puisque I’addition sur R est commutatif. Pour
chaque x € Gonaque 1 —x € G et que 1 —x est I'inverse de z, en fait z+ (1 —z) = 1
et donc @ (1 — z) = 0. Par commutativité, 1 — = est aussi U'inverse a droite. Il ne
reste plus qu’a montrer que l'opération est associative. Soient x1,z5,23 € G, il y a
trois possibilités :
1. Sizi+as, z9+23<1,0na
T1 DT =21+ To, TaD Tz =To+ X9
et
(x1 B x2) Drg=(x1+22) Drg=2x1 +T2+T3—¢€

avec ¢ = 0 ou 1 suivant que z1 + 25 + 23 est < 1 ou > 1 (on observe que comme

+ est associative sur R on n’a pas besoin de mettre de parantheses dans cette

inégalité et que

e =c¢e(x1 + 22 + x3)
ne depend que de la somme des trois termes et pas de leurs valeurs individuelles).
D’autre part
Il@($2+l'3) =21 +2xg+ T3 —€

avec le méme € = (1 + x2 + x3). Ainsi on a

(.%'1 @372)@(173 :l'l@(l’g@l‘g). (01)



2. Sil’1+l’2<1<l’2+l’3, on a
$1@$2:l’1+l’2, $2@1’3:$2+$3—1

et
(x1®x2)69m3:(x1+x2)€ax3:x1+x2+x3—l—€

avec € = 0 ou 1 suivant que x1 + x5 + x3 est < 2 ou > 2. On a également

21D (a®ry)=01® (r2+23—1)=x1+22+2353—1—¢.

On a donc (0.1). Par commutativité de & (et de +) cela traite aussi le cas
To + 23 < 1< 214+ 29
3. Sil< x+ 29,29 + x3 alors

$1@$2:$1+$2—1<1, ToPrs=29+r3—1<1

et
(X1 @) Drg=(x17+22—1)Darz=z1+x2+23—1—¢

avec € = 0 ou 1 suivant que z; + 2 + z3 est < 2 ou = 2. Egalement
$1@(152@LB3) =$1@(I2+I3—1) :111+I2+I3—1—€.
On a donc bien (0.1).

Exercice 2 (x). Soit X un ensemble. Dans la premiere serie, on a defini sur ’ensemble
de ses parties P(X) une loi de composition

A: (A B)eP(X)xP(X)— AAB € P(X),
ou AAB est la difference symetrique de A et B :
AAB:=AUB-ANB={rxr€ AUB, 2 ¢ ANB}CX

(les elements de X qui sont dans la reunion de A et B et qui ne sont pas dans leur
intersection).

1. Definir un element neutre ep(x) € P(X) et une inversion o' : P(X) — P(X)

de sorte que
(P(X), A epx), )

forme un groupe commutatif.



Solution : .

On montre d’abord que 'opération A est commutatif et associatif. Pour la commua-

tivité :

AAB=AUB-ANB=BUA—-BNA=BAA,

puisque U et N sont les deux commutatifs. L’associativité peut étre démontrée a I'aide
de simples diagrammes de Venn : Ici, on voit les deux types de calcul avec chacun
une étape intermédiaire, pour que I’on puisse mieux voir ce qui se passe.

X

AAB

(AAB)AC

BAC

AA(BAC)



On peut également effectuer les calculs suivants. On note que :
AAB=AUB—-ANB=AUBN(ANB)-.
De plus :
(ANB)*=A°UB°et (AU B)° = (A°N B°).

Donc on calcule :

(AAB)AC

= ((AAB) c) (AAB no)°
(AUB)N(ANB))UC)N (((AUB)N(ANB))NC)°
(AUB)N(A°UB%))UC) N (((AUB)N(A°U B%))*UC°)
ANAYUANBYU(BNAYU(BNB)YUC)N ((AUB)*U(A°U B UC)
(ANB)U(BNA)UC)N ((A°NBYU(ANB)UCY)
NB°NCYU(BNA“NC)U(CNANBY)U(CNANB).

= (((
(((
((
(
= (4

Pareil on obtient :

AA(BAC)

= ((AU (BAC) N (AN (BAC))®

= (AU ((BUO)N(BNC)))N(AN((BUC)N(BNC)))*

= (AU ((BUC)N(B°UC))) N (A°U((BUC)N(B°UCY))

= (AU(BNB)YU(BNC)U(CNB)YU(CNCY))N (AU (BUC) U (B UC))

=(AuBnNCYU(CNBY))N (AU (B NC)U(BNC))
=(ANB°NCYU(BNANC)U(CNANBYU(CNANDB).

Alors A est bien associatif. On cherche ’elément neutre. De la série 1 exercice 5.2 on
sait que :

DAA = AAD = A,
alors () = e est I’élément neutre. De plus on a vue que
AAA =0 = en,
1

donc o' : Z(X) — P(X), A A est 'application d’inversion. Avec l'associativité
et la commutativité de la premiere parti on obtient un groupe commutatif.



Exercice 3 (Groupes de fonctions). Soit X un ensemble et (G, ) un groupe. Soit

F(X,G)={f: X G}

I'ensemble des fonctions de X a valeurs dans G (les applications de X vers G).

On muni F(X,G) de la loi de composition interne suivante : etant donne fi, fo €
F(X,G) on defini la fonction f; x fo par

Ve € X, fix fa(z) = fi(x) x fa(z).

(ici on abuse les notations en notant la loi de composition sur F(X,G) de la meme
maniere que celle sur G).

1.

1

Trouver un element neutre er(x,q) €t une inversion e~ de sorte que

(F(X,G),* erxc),® ') forme un groupe.
Soit U C G un sous-ensemble de G. Donner une condition necessaire et suffisante
pour que le sous-ensemble des fonctions a valeurs dans U

F(X,U)C F(X,Q)

forme un sous-groupe de F(X, G).

Solution : . L’idée sera vraiment tout au long de I'exercice de puiser autant de choses

que possibles dans la structure de groupe de G pour en déduire des choses sur celle
de F(X,G).

1.

On pose
erxa): X = G, x—eq

et pour f € F(X,G),
X =G, o (flo)™h

En effet, pour tout f € F(X,G) et pour tout x € X on a :

— [rerxe () = f(2) *erxe () = f(x) xeq = f(z). Puisque f x er@.)
et f correspond sur tout x € X, ils sont égaux, et donc er(x ) est neutre
a droite.On montre la neutralité a gauche de la méme maniere.

—  fxfHx) = fa)x(f(z)) ' = eq = erx.q)(x). Comme les deux application
correspond sur tout x € X, ils sont égaux, et donc f~! est bien I'inverse
a droite de f. On montre de la méme maniere que f~! est bien I'inverse a
gauche.

On peut se convaincre facilement que 'associativité de la loi de F (X, G)) découle
de celle de la loi de G par un argument similaire (On montre que (f x g) x h et
f (g *h) correspond sur tout z € X.)



Remarque. : On a fait ici un petit abus de notations en écrivant f~! sans avoir
encore verifie que c’etait bien l'inverse de f (mais on s’en remettra). Notez
cependant que f~! ne designe pas la reciproque de f (au sens reciproque d’une
bijection).

2. On veut montrer que U est un sous-groupe de G si et seulment si F(X,U) est
un sous-groupe de F (X, G).

= : Soit U un sous-groupe de G on va montrer que F (X, U) est un sous-groupe
de F(X,G). On a eg € U, alors la fonction er(x ) prend valuers dans U,
ie. erxq) € F(X,U). Si fi,fa € F(X,U), alors on a que pour tout
z € X: fi(z), folw) € U. Done fix fy'(x) = fi(z) * (fo(x))™" € U pour
tous les x € X. Alors f1 x f;+ € F(X,U). Alors F(X,U) verifie le critére
de sous-groupe vue en cours.

< Soit F(X,U) C F(X,G) un sous-groupe. On va montrer que U C G est
un sous-groupe. La fonction er(x ) est dans F(X,U), i.e. son image est
inclu dans U, i.e. e € U. Soient g1,92 € U. On considere les fonctions
constantes f;: X — G; x +— ¢g;, pour i = 1,2. On a f1, f» € F(X,U), et
alors f, ' € F(X,U). Donc pour n’importe quel z € X :

Gxgyt = fi@)x fole) ™ = fix fy 'l (x) € U
Alors U C @G verifie le critere de sous-groupe vue en cours.

Exercice 4 (Groupes modulaires). Soit ¢ > 1 un entier non nul; on definit sur Z la
relation suivante (de congruence modulo ¢)

m=n(modq) <= m-—-n=qk, k€Z
et on dit que m et n sont congrus modulo ¢ (ie. la difference m — n est divisible par

q)-

Pour a € Z la classe de congruence a (mod q) est ’ensemble des entiers m congrus a
a modulo ¢ :
a(modq) ={m €Z, m=a(modq)} C Z.

L’ensemble de ces classes de congruences modulo ¢ est note
Z/qZ = {a(modq), a € Z}

(c’est donc un sous-ensemble de P(Z)).

1. Montrer que la relation de congruence modulo g est une relation d’equivalence
(reflexive, symetrique, transitive).
2. Montrer que

a(modq) =a+qZ={a+qk, ke€Z} CZ.



3. Montrer que pour toute classe a (mod q) € Z/qZ il existe r € {0,--- ,q — 1} tel
que
a (mod ¢q) = r (mod q).

Quel est le cardinal de Z/qZ?
4. pour A, B € #(7Z) des sous-ensembles de Z, on a pose

ABB:={a+b, ac A, be B} e Z(Z).
On definit egalement
BA:={-a, a € A} € Z(Z),

I'ensemble des opposes des elements de A. Soient a (mod ¢), b(modgq) € Z/qZ,
montrer que

a(modq) B b(modg) =a+b(modq) =a+ b+ ¢Z.

et que
Ha (mod ¢) = (—a) (mod q) = —a + ¢Z.

5. Montrer que (Z/qZ,8,0 (mod ¢),H) forme un groupe commutatif : le groupe
des classes de congruence modulo gq.

6. On rappelle la notation "multiple” (dans la notation additive) pour n > 1
n.a (mod q) := a (modgq) + - - - + a (mod gq) (n fois)

(et on rappelle qu’on a une notation simnilaire pour n < 0). Montrer que pour
nez
n.a (mod q) = na (mod q)

(la classe de congruence de lentier na).
7. Montrer que le sous-groupe Z.1 (mod q) verifie

Z.1(modq) = {n.1(modq), n € Z} =Z/qZ.
8. Montrer que si a est premier avec ¢ (ie. pged(a,q) = 1) alors
Z.a (mod q) = {n.a(modq), n € Z} = Z/qZ

(on utilisera Bezout pour montrer qu’il existe n € Z tel que n.a(modgq) =
1 (mod q)).

Remarque. On a donc montré que pour tout entier ¢ > 1 il existe un groupe com-
mutatif fini d’ordre q.



Solution : . 1. On montre que cette relation est une relation d’équivalence. Pour
cela, il faut verifier trois choses :

i) Reflexivite : Soit m € Z. Alors on voit que m —m =0 = 0- ¢, donc m = m (mod q)
i1) Symetrie : Soient m,n € Z tels que m = n(modq), i.e. il existe k € Z tel que
m —n = kq. Mais alors n — m = —kq = (—k)q. En posant p := —k € Z, on alors que
m =n(modq) = n=m(modq).

i11) Transitivite : Soient m = n (mod q), et n = [ (mod q), i.e.

dkkKe€eZ: m—n=kq et n—1=Fkq
mais alors, m — [ = q(k + k') et on obtient donc que m = [ (mod q).

2. 11 suffit simplement de voir que :

a(modq) ={me€Z: m—a=kq pourun ke Z}
={meZ: m=a+kq pour un k€ Z}
={a+kq pourun ke€Z} CZ

3. Soit a (mod q) € Z/qZ. On effectue la division euclidienne de a par g. On a alors
que

dkeZ, et re{0,1,---,q—1} t.q. a=kqg+r
On voit que a = r(modgq) car a —r = a — (a — kq) = kq. Puisque a et r sont en
relation, leurs classes d’équivalence sont égales.
On veut montrer que |Z/qZ| = q. Mais on voit que Z/qZ correspond a l’ensemble des
classes d’équivalence. Or chaque classe a un représentant unique dans {0, 1,--- ,¢g—1}.
Cela nous donne alors le nombre de classes, modulo le choix des représentants, est
exactement q.

4.

a(modq)Bb(modq) ={a+kq k€ Z}B{b+kq keZ}
={a+kq+b+Fkq keZ}
={(a+b)+qlk+Fk) kK €Z}
={(a+b)+q-p pEZ}, enposant p=Fk+k
= (a+b) (mod q)

et



Ha (mod q) = {—(a + kq),k € Z}
={—-a—kq,k€Z} ={—a+pq,p €Z} enposant p=—k
= (—a) (mod q)

5. On vient de vérifier que B est bien a valeurs dans Z/qZ.
Il faut maintenant vérifier que cette loi de groupe est associative :

(a (mod q) Bb(modq)) B ¢ (modq) = a+ b(modq) B ¢ (mod q)
= (a+b) + c¢(mod q)
=a+ (b+c¢) (modq) =a(modq) B (b+ ¢) (mod q)
= a(mod ¢q) B (b (mod ¢q) B ¢ (mod q))

Donc l'operation H est associative.

On doit montrer a présent que 0 (mod ¢) est bien le neutre :

a (mod q) B0 (mod q) = a + 0 (mod ¢) = a (mod q)
=0+ a(modgq) = 0(mod ¢) B a (mod q).

Donc 0 (mod q) est bien I’élément neutre pour .

Il reste a voir que B est effectivement 1'inverse pour H.
a (mod ¢) BHa (mod q) = a — a (mod ¢) = 0 (mod q)

et
Ba (mod ¢) B a (mod ¢) = —a + a (mod ¢) = 0 (mod q).

Donc Ha (mod ¢) est I'inverse de a (mod q).
Et enfin, on a que
a (mod ¢) B b (mod ¢) = a + b (mod q)
= b+ a(modgq) = b(modq) B a(mod gq).

Et on obtient ainsi un groupe commutatif, comme voulu.



6. On raisonne par récurrence sur n.

On voit que a (mod ¢) = 1-a(modq).
n n+1

Supposons a présent que Y a (modq) = n - a(mod ¢). Montrons que Y a(modq) =
i=1 i=1

(n+1)-a(modg) (avec éa (mod q) :=

(a(modq) B ---Ha(modq))

n fois

;’L+1 n

> a(modq) =3 a(modgq) B a(modq)

i=1 =1
=n-a(modq)+a(modq) = (n-a+a)(modq) = (n+1)-a(modgq).
Ce qui conclut la récurrence.

7. Z.1 (mod q) := {n.1 (mod q), n € Z}. On se rappelle que
Z/qZ: {T+QZ,T € {0717 7q_1}}

’Z.l (mod q) C Z/qZ‘ : soit n € Z. Alors il existe un unique r € {0,1,--- , ¢ — 1} tel
que n (mod ¢) = r (mod ¢), ce qui implique que n (mod q) € Z/qZ.

’Z.l(modq) . Z/qZ‘ : Soit r € {0,1,---,¢ — 1}. Alors 7 (modgq) = r---1(modq),
par 6. Donc r (mod ¢) € Z.1 (mod q).

8. Le théoreme de Bezout affirme qu’il existe n,m € Z tels que na + mqg =1 <
1 —na=mq <= na(modq) = 1(modq).
Considérons alors A := {r - na (modq),r € {0,1,--- ,¢—1}} CZ-a(modq).
Mais puisque na (mod g) = 1 (mod g), on obtient que

A= {T'l(mOdq)ar € {Oala 7q_1} = {r(mOdq)vr € {0717 aq_l} :Z/qZ
Exercice 5. Soit (G,«,e,e71) un groupe fini de cardinal n > 1. On enumere ses
elements de la maniere suivante

G = {g(] =€,01," 7gn—1}-

On peut representer la loi de groupe sous forme d’un tableau

* | e g | Gn1
€ € [%1 te gn—1

g1 [ gL*xgr |- g1 * gn—1

In—1 | Gn—1 | Gn—1*Gg1 | " | Gn—1 * On—1




1. Donner ces tableaux pour n = 1,2, 3 (si on veut, on pourra utiliser un corollaire
convenable du Thm de Lagrange).

Solution : . Pour n = 1 : G = {e}. Le tableau est le suivant

*

e

En effet, on a que ex e = e, car e est le neutre.

Pour n =2 : G = {e, g1 }. Et le tableau donne :

* e (%1
€| e g1
g1 | 91 9% =€

Il est clair que g1 xe = ex g1 = g;.
Supposons que g; * g; = g1. Mais alors g; = g1 x (g1)”! = e, et on on aurait g; = e.
Ce qui est une contradiction.

Pour n =3 : G = {e, g1, 92}. Le tableau est :

x| € g1 92
el e g1 g2
DN |G g =G| axg1=¢ |
92192 g1*go=¢€ | Ga*xGo =G

Encore une fois, il est clair que e x g; = g; xe = g;, pour i = 1, 2.

Considérons a présent le sous-groupe engendré par g; : (g;) < G.

Le theoreme de Lagrange affirme que |(g1)| divise |G| = 3, alors son cardinal est soit
1, soit 3. Puisque g; # e, on a que [{(g1)| = 3.

Par conséquent, si g7 = e, on aurait que |(g1)| = 2, ce qui est absurde. Et si g2 = g1, on
obtiendrait g; = e, ce qu'on a supposé faux. Par conséquent, on obtient que g2 = go.
Par symétrie, g2 = g;.

Et donc g1xgs = g1%g3 = g; = e, car g est d’ordre 3. De la méme maniere, gy xg; = e.



